
J
H
E
P
0
4
(
2
0
0
6
)
0
3
3

Published by Institute of Physics Publishing for SISSA

Received: March 21, 2006

Accepted: April 10, 2006

Published: April 19, 2006

From Sasaki-Einstein spaces to quivers via BPS

geodesics: Lp,q|r

Sergio Benvenutia and Martin Kruczenskib

aScuola Normale Superiore, Pisa and INFN, Sezione di Pisa

Italy
bDepartment of Physics, Brandeis University

Waltham, MA 02454, U.S.A.

E-mail: sergio.benvenuti@sns.it, martink@brandeis.edu.

Abstract: The AdS/CFT correspondence between Sasaki-Einstein spaces and quiver

gauge theories is studied from the perspective of massless BPS geodesics. The recently

constructed toric Lp,q|r geometries are considered: we determine the dual superconfor-

mal quivers and the spectrum of BPS mesons. The conformal anomaly is compared with

the volumes of the manifolds. The U(1)2F × U(1)R global symmetry quantum numbers

of the mesonic operators are successfully matched with the conserved momenta of the

geodesics, providing a test of AdS/CFT duality. The correspondence between BPS mesons

and geodesics allows to find new precise relations between the two sides of the duality.

In particular the parameters that characterize the geometry are mapped directly to the

parameters used for a-maximization in the field theory.

The analysis simplifies for the special case of the Lp,q|q models, which are shown to cor-

respond to the known ”generalized conifolds”. These geometries can break conformal

invariance through toric deformations of the complex structure.

Keywords: AdS-CFT Correspondence, D-branes.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep042006033/jhep042006033.pdf

mailto:sergio.benvenuti@sns.it
mailto:martink@brandeis.edu.
http://jhep.sissa.it/stdsearch


J
H
E
P
0
4
(
2
0
0
6
)
0
3
3

Contents

1. Introduction 1

2. Strings moving in the Lp,q|rmanifold 4

2.1 A change of coordinates 4

2.2 R-charge 5

2.3 BPS geodesics 6

3. From GLSM charges to quivers and chiral rings: Lp,q|r 7

3.1 BPS mesons 12

4. Resolving the strip: Lp,q|q 14

4.1 Comparison with the geometry 16

5. General case: Lp,q|r 17

5.1 R-charges 17

5.2 The volume of the manifold 18

5.3 BPS operators and massless geodesics 19

6. Conclusions 20

7. Useful formulas 21

7.1 The geometry 21

7.2 Map to the field theory 22

1. Introduction

This paper studies the AdS/CFT correspondence [1] in the case of four dimensional N = 1

gauge theories. Type IIB backgrounds of the form AdS5×X5, where X5 is a Sasaki-Einstein

manifold, are dual to a special class of superconformal gauge theories called quivers. A

quiver theory has product gauge group
∏

SU(Ni) and the matter fields transform in bifun-

damental representations. For superconformal quivers the two gravitational central charges

c and a are always equal and proportional to the inverse of the volume of X5. The moduli
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space of vacua is of the form SymN (M3), where M3 is the Calabi-Yau cone whose base

is the Sasaki-Einstein X5. Another peculiar feature of these no-flavor theories is the nat-

ural existence of long single-trace mesonic operators, constructed from closed paths in the

quivers, that are dual to semiclassical strings moving in X5.

A special case of this is ”toric AdS/CFT”: the Calabi-Yau cone M3 is a toric mani-

fold, admitting three U(1) isometries. In other words X5 is a T 3 fibration over a polygon,

which is drawn on an integer two dimensional lattice. This small set of discrete data

(that can be encoded in the U(1) charges of the Gauged Linear Sigma Model fields de-

scribing the toric cone) is enough to specify completely the full geometry, and hence also

the corresponding superconformal gauge theories. Of course, a more explicit description,

both of the geometries and of the gauge theories, is desirable. On the geometric side, in

particular, there is no known way to determine the toric Sasaki-Einstein metric on X5

starting from the toric polygon. On the gauge side, the quiver can be thought of as a

more explicit description of the algebro-geometric structure of the singularity M3, and an

algorithm exists [3], even though it can efficiently handle only small toric polygons; see

[4 – 8, 10, 9].

Recently various work has been done in context of toric AdS/CFT, due to the discovery

of infinite sets of explicit Sasaki-Einstein metrics, in contrast to the previous knowledge of

only two examples, namely S5 and T 11. The latter case was analyzed by Klebanov and

Witten [2]. The study of these models led to many interesting results.

[11 – 13] found an infinite set of Sasaki-Einstein metrics on S2 ×S3, called Yp,q. These

metrics are cohomogeneity one, the isometries being SU(2)×U(1)2 . One Abelian isometry,

generated by the Reeb vector, is present in any, toric or not, Sasaki-Einstein manifold and

is dual to the R-symmetry of the gauge theory. In [14] the toric description was found. The

CY cones are quotients of C
4; the four GLSM fields have charges (p + q, |p − q|;−p,−p).

The Sasaki-Einstein spaces are smooth precisely when p and q are coprime. Recently, a

cohomogeneity-two generalization has been found [15, 16], leading to the so called Lp,q|r

spaces. In fact, the same local metrics on the Kähler-Einstein 4d base have been found

some time ago in the mathematical literature [17]. Moreover, in [17] these metrics are

shown to be the most general orthotoric Einstein metrics. The toric data of the Lp,q|r CY

cones are a simple generalization of the toric data of the Yp,q cones. There are still only

four GLSM fields and a single U(1) action, with integer charges (p, q;−r,−p − q + r)[15].

If p + q = 2r one finds Y p̃,q̃.

In [18], using the toric description of the singularities, the Yp,q superconformal quivers

have been constructed; a key role was played by the SU(2) global symmetry: focusing

on toric quivers with this non-Abelian flavor symmetry one is basically led to the Yp,q

quivers. Various checks of the correspondence can be performed [19, 18, 20 – 22]. Also the

marginal deformations [23] match [24, 25]. A crucial role is played by the technique of

a-maximization [26], which relies on well established general properties of supersymmetric

theories [27, 26] and is thus valid for any 4d SCFT. One, maybe surprising, feature of

the Yp,q theories, that is important for the present paper is the following: in the simpler

Seiberg dual ”phases” of the theories, namely the toric phases, there is a high degen-

eracy in the global symmetry quantum numbers of the bifundamental fields. This can
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be understood to be necessary from the AdS perspective: the smallest dibaryon oper-

ators have the same charges (modulo a factor of N), and there are only a very small

number of them, since they directly correspond to the supersymmetric 3-cycles in the

geometry.

We have recently witnessed a general progress in the algebro-geometric duality be-

tween toric singularities and the gauge theories living on D3 branes probing the singu-

larities: in [28] Hanany and Kennaway put forward a correspondence between the toric

data and the corresponding quivers. All toric quivers can be drawn on a torus provid-

ing a polygonalization of the torus; every superpotential term precisely corresponds to

a face. The dual graph of the quiver, the dimer, has a direct physical interpretation in

term of brane setups [29]. These setups significantly generalize previously known con-

structions [32 – 34, 8]. In [30] many features of this picture have been clarified and many

examples have been given. The quiver/dimer ↔ toric Calabi-Yau’s correspondence is part

of a general framework [31] connecting statistical mechanics of crystals and topological

strings.

In [22] the periodic quiver picture was shown to encode naturally the mesonic operators

of the theories. In particular, the emergence of semiclassical strings directly from paths in

the periodic quivers was discussed: roughly speaking, the direction of a long path on the

quiver is mapped to the position of the string in the toric base of the Sasaki-Einstein space.

Massless BPS geodesic (i.e. point-like massless strings moving only along the R-charge di-

rection) are special cases of these, and turn out to encode a great deal of information about

the structure of the quiver.

The purpose of this paper is to show how the techniques of [22] can be extended to

generic examples of N = 1 AdS/CFT.

In section 2 we analyze the geometries, find the angle associated to the R-charge and

determine the properties of massless point-like strings moving along this direction, that we

call BPS geodesics.

Inspired by the results of [18] and [28], using the relation between the physical (p, q)-

webs of five branes and toric diagrams [35, 6], we then construct the superconformal

quivers associated to the Lp,q|rgeometries. An important role in the determination of the

global structure of the quivers is played by the mesonic BPS operators, that we determine

as in [22].

The main result of the present paper is a direct comparison between these BPS mesons

and BPS geodesics. As a warm up, in section 4 we discuss in detail this matching for the

special cases of Lp,q|q spaces. For these cases the gauge theories are known from [36, 34] and

the analysis is simpler and somewhat more transparent, both from the gauge side and from

the string side (the quartic equations in these cases become quadratic, as for the Yp,qs).

The end result is a non trivial matching of the U(1) × U(1) flavor and U(1)R conserved

charges between BPS geodesics and BPS mesons.

This comparison is than extended to a general Lp,q|rmodel in section 5. In this sec-

tion we also provide a direct relation between the parameters (α, β, xi) characterizing the

manifolds [15] and the parameters used in a-maximization [26].
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2. Strings moving in the Lp,q|rmanifold

In this section we study point-like massless strings moving in the AdS5 × Lp,q|r manifold

whose metric is [15]:

ds2 = −dt2 cosh2ρ + dρ2 + sinh2ρ dΩ2
3 + ds2

p,q|r (2.1)

ds2
p,q|r = (dξ + σ)2 + ds2

[4] (2.2)

where

ds2
[4] =

ρ2

4f(x)
dx2 +

ρ2

h(θ)
dθ2 +

f(x)

ρ2

(

sin2 θ

α
dφ +

cos2 θ

β
dψ

)2

(2.3)

+
h(θ) sin2 θ cos2 θ

ρ2

(

(α − x)

α
dφ − (β − x)

β
dψ

)2

(2.4)

and

σ =
(α − x) sin2 θ

α
dφ +

(β − x) cos2 θ

β
dψ (2.5)

f(x) = x(α − x)(β − x) − µ (2.6)

ρ2 = h(θ) − x (2.7)

h(θ) = α cos2 θ + β sin2 θ . (2.8)

The geodesics we are interested in sit at the point ρ = 0 of AdS5 and move in the internal

manifold. Therefore in the rest of the paper we ignore the AdS5 part of the background.

To study such geodesics we first do a change of coordinates and then properly identify

the angle conjugated to the R-charge. With that information we find the relation between

the conserved charges for some particular cases of interest which we call extremal geodesics.

2.1 A change of coordinates

In order to facilitate the comparison between BPS geodesics and BPS mesons in the gauge

theory we redefine the variables by y = cos(2θ), getting

ds2
[5] = (dξ + σ)2 + ds2

[4] (2.9)

with

σ =
(α − x)(1 − y)

2α
dφ +

(β − x)(1 + y)

2β
dψ . (2.10)

In such a way the two functions σi in dξ+σφdφ+σψdψ are products of two linear functions

of one coordinate on the toric base (x and y). This fact arises naturally when comparing

with the gauge theory.

The local Kähler-Einstein metric takes the fairly symmetric form

ds2
[4] =

ρ2

4f(x)
dx2 +

f(x)

4ρ2

(

(1 − y)

α
dφ +

(1 + y)

β
dψ

)2

+ (2.11)

+
ρ2

4g(y)
dy2 +

g(y)

4ρ2

(

(α − x)

α
dφ − (β − x)

β
dψ

)2

(2.12)
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with

f(x) = x(α − x)(β − x) − µ (2.13)

g(y) =
1

2
(α + β − y(α − β))(1 − y2) (2.14)

ρ2 =
1

2
(α + β − y(α − β) − 2x) . (2.15)

With α > β the ranges of the coordinates on the base is x1 ≤ x ≤ x2 and −1 ≤ y ≤ 1,

where 0 ≤ x1 ≤ x2 ≤ x3 are the three roots of f(x). Since x ≤ x2 ≤ β we have ρ2 ≥
1
2 (α− β)(1− y) ≥ 0, for y ≤ 1. Note also that g(y) is a cubic function of y as f(x) is of x.

2.2 R-charge

To be able to compare the results for massless strings with the field theory side we have

to identify the angle conjugate to the R-symmetry. In order to do that, we need to discuss

briefly the computation of the holomorphic 3-form on the Calabi-Yau cone Mp,q|r
3 . This is

because the holomorphic three form can be written as Ωijk = ηT Γijkη with η the covariantly

constant spinor. The R-charge rotates the covariantly constant spinor as η → e
1
2
iαη and

Ω → eiαΩ.

With the 1-form σ defined in the four dimensional base of the Sasaki-Einstein manifold,

we compute its Kähler form k and complex structure J as:

k = −1

2
dσ, Jb

a = kacg
cb, P b

a =
1

2

(

δb
a + iJb

a

)

(2.16)

where P b
a projects out the anti holomorphic components. With this projector, we can find

two holomorphic 1-forms η1,2:

η1 =
x − β

f(x)
dx − 1 + y

g(y)
dy +

2i

α
dφ (2.17)

η2 =
x − α

f(x)
dx +

1 − y

g(y)
dy +

2i

β
dψ . (2.18)

The Sasaki-Einstein metric allows to construct a Calabi-Yau cone Mp,q|r
3 with metric

ds2 = dr2 + r2ds2
[5] . (2.19)

In this manifold we introduce a third holomorphic form

η3 =
dr

r
+ i (dξ + σ) . (2.20)

Now, as argued by Martelli and Sparks in [16], the covariantly constant holomorphic 3-form

follows as

Ω[3] =
√

f(x)g(y) eiψR r3 η1 ∧ η2 ∧ η3 . (2.21)

The phase ψR is conjugated to the R-charge and can be determined to be

ψR = 3ξ + φ + ψ . (2.22)

from the condition that Ω[3] should be covariantly constant.
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We can therefore rewrite the 5d metric as

ds2
[5] =

(

dψR

3
+

(

(α − x)(1 − y)

2α
− 1

3

)

dφ +

(

(β − x)(1 + y)

2β
− 1

3

)

dψ

)2

+ ds2
[4] . (2.23)

2.3 BPS geodesics

The action for a massless particle moving along the internal manifold can be written as

S =
1

2

{

(
1

3
ψ̇R + a1φ̇ + a2ψ̇)2 + b1ẋ

2 + b2ẏ
2 + (c1φ̇ + c2ψ̇)2 + (d1φ̇ − d2ψ̇)2

}

(2.24)

with the definitions

a1 =
(α − x)(1 − y)

2α
− 1

3
, a2 =

(β − x)(1 + y)

2β
− 1

3
, b1 =

ρ2

4f(x)
, b2 =

ρ2

4g(y)
(2.25)

c1 =

√

f(x)

2ρ

(1 − y)

α
, c2 =

√

f(x)

2ρ

(1 + y)

β
, (2.26)

d1 =

√

g(y)

2ρ

(α − x)

α
, d2 =

√

g(y)

2ρ

(β − x)

β
. (2.27)

We can compute the conjugate momenta:

PψR
=

1

3

(

1

3
ψ̇R + a1φ̇ + a2ψ̇

)

(2.28)

Py = b2ẏ (2.29)

Px = b1ẋ (2.30)

Pφ = 3a1PψR
+ c1(c1φ̇ + c2ψ̇) + d1(d1φ̇ − d2ψ̇) (2.31)

Pψ = 3a2PψR
+ c2(c1φ̇ + c2ψ̇) − d2(d1φ̇ − d2ψ̇) (2.32)

and the Hamiltonian

H =
9

2
P 2

ψR
+

1

2b2
P 2

y +
1

2b1
P 2

x +
1

2
(σ2

1 + σ2
2) (2.33)

where

σ1 = (c1φ̇ + c2ψ̇) (2.34)

σ2 = (d1φ̇ − d2ψ̇) . (2.35)

In terms of the momenta we get

σ1 = −−d2Pφ − d1Pψ + 3(a1d2 + a2d1)PψR

c1d2 + c2d1
(2.36)

σ2 = −−c2Pφ + c1Pψ + 3(a1c2 − a2c1)PψR

c1d2 + c2d1
. (2.37)

Now we consider geodesics that satisfy Py = 0, Px = 0 implying that x = x0 and y = y0

with x0 and y0 constant. These constants should be chosen so as to minimize H as follows

– 6 –
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y x Pφ/PψR
Pψ/PψR

LD −1 x1 3
(

2
3 − x1

α

)

−1

RU +1 x2 −1 3
(

2
3 − x2

β

)

LU +1 x1 −1 3
(

2
3 − x1

β

)

RD −1 x2 3
(

2
3 − x1

α

)

−1

Table 1: Values of the flavor charges for the four extremal BPS geodesics. The names are related

to their field theory interpretation.

form the eq. of motion for x and y. The minimum is when σ1 = σ2 = 0, which we expect

to correspond to a BPS geodesic.

This implies φ̇ = ψ̇ = 0 and from (2.32):

Pφ = 3a1PψR
, Pψ = 3a2PψR

. (2.38)

Using the definitions (2.25) we can rewrite this as

Pφ

PψR

=
α − 3αy − 3x + 3xy

2α
(2.39)

Pψ

PψR

=
β + 3βy − 3x − 3xy

2β
. (2.40)

These eqs. give the ratios of the conserved charges as a function of the (x, y) position of

the BPS geodesic. We will be in particular interested in the values of these ratios at the

four vertices of the rectangle parameterized by (x, y). Here the conserved momenta assume

special values that we show in table 1. Since multiplying two operators the U(1) charges

simply add, it is enough to check the duality between geodesics and BPS mesons at these

four extremal points, that corresponds to the four vertices of the toric diagrams, as we see

in the next section.

3. From GLSM charges to quivers and chiral rings: Lp,q|r

In this section we pass from the toric data of the Lp,q|rsingularities to a representation of

the gauge theories.1 Modulo redefinition of the variables, one can assume p ≤ s ≤ r ≤ q

(recall p + q = r + s). We also assume that there is no overall common divisor for the

p, q, r, s, otherwise one is dealing with Abelian orbifolds.

Since the coordinates on the toric base lie on a polygon with four edges, it is clear

that the toric diagram have four edges as well.2 Using SL(2, Z) redefinitions of the toric

quadrangle, one can assume that two vertices are in position (0, 0) and (1, 0). A generic

four-edges toric diagram is reported in figure 1. The natural correspondence between toric

1This problem is addressed from the dimer perspective of [28, 30] also in [37, 38] and [39]
2As we will see from the BPS mesons, if some of the four pairs (p, s), (p, r), (q, s), (q, r) have a non

trivial common divisor, there are additional points on the boundary of the toric diagram. For the moment

we will assume no non trivial common divisors, that leads [16] to smooth geometries.
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(1,0)

(a,p)

(0,−1)

(−s,b)

(p,1−a)

(s−p,a−b)  

(0,0)

(b,s)

Figure 1: Generic toric diagram with four edges. The related (p, q)-web is depicted.

diagrams and (p, q)-webs of five branes [35] is also emphasized. As explained in [6], going

into the mirror picture, one can interpret the number of bifundamental fields of the quiver

as intersection numbers of 3-cycles in the mirror picture. These intersection numbers

correspond to “intersections” of (p, q)-branes, given by the vector product [6]:

(Ci ◦ Cj) = piqj − pjqi . (3.1)

Using this simple formula we compute the (p, q)-branes intersection for our case of interest

in figure 2.

Since intersection numbers can be thought as vector products, they are positive when

the sine of the angle between vectors is positive. Since the multiplicities are positive that

allows to determine the direction of the arrows denoting the bifundamental fields. It is easy

to see that the multiplicities depend only on the combination q = as − pb (using SL(2, Z)

redefinitions, one can assume a ≤ p). It is also convenient to define r = p+ q− s (implying

p+ q = r + s). The resulting bifundamentals together with their multiplicities are depicted

in figure 3. With our definitions, we are thus describing the toric diagram corresponding

to GLSM charges (p, q;−r,−p− q + r) [15]. p, q, r, s are precisely the multiplicities of four

of the type of the fields that have to appear in the toric phases of the quiver. According

to their direction, we call these four fields U ↑, D ↓, L ← and R →.

Figure 3 should be thought of as the “folded” superconformal quiver. In other words

one can read off form that the number of the various types of fields and the number of

nodes. There are two additional diagonal fields ↖ and ↙.3 This representation is very

3The picture we are proposing here is expected to be valid only for a subset of the toric phases. For

examples for the Y
p,q in the so called “double impurity phases” there are also diagonal fields pointing

rightward [40].
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Field Number R0 QH QV Q3 QB

R → q 1 +1 0 0 + p

L ← p 1 −1 0 +1 + q

U ↑ s 0 0 +1 −1 −r

D ↓ r 0 0 −1 0 −s

↖ q − s 1 −1 +1 0 q − r

↙ q − r 1 −1 −1 +1 q − s

Table 2: Charge assignments for the basic fields. The charge Q3 is redundant but plays a role in

the calculations. R0 is a trial R-charge which satisfies the same anomaly cancellation constraints

as the actual R-charge.

useful in determining the global symmetry quantum numbers of the bifundamentals. We

call the two toric U(1) symmetries JH and JV , according to their orientation. The values

are reported in table 2.

Another way of finding the global symmetries from figure 3 is to associate a symmetry

to every of the four vertices, say Q1, . . . , Q4. The charges are +1 for bifundamentals

outgoing from that vertex, −1 for ingoing bifundamentals and 0 for the others. The sum

of these four symmetries vanishes, and a particular linear combination can be seen to be

the baryonic symmetry.4

The way to prove that all the field with the same direction have the same global sym-

metry quantum number (recall however that they have different gauge quantum numbers)

is simply to impose the vanishing of the anomalies of these currents for each node.

By studying the possible terms in the superpotential one concludes that the toric

representation of the quiver can be constructed using the blocks depicted in figure 5. These

block should be glued, respecting the orientation of the sides, into a fundamental domain

with a given number of each type. Finally it should be possible to draw the fundamental

domain on a torus (equivalently it should be possible to tile the plane with it) giving rise to

identifications between the points in the boundary of such domain. This is better described

with an example. In figure 6 and table 7 we give a construction with na = 1, nb = 3, nc = 1.

In general, the number of blocks of type (a), (b) and (c) are: na = p, nb = q − s, nc =

q − r. The total number of nodes in the quiver is p + q, the total number of bifundamental

fields is p + 3q. This gives a total number of each type of field in agreement with table 2.

Gluing these fundamental blocks gives rise to vertices of the type in figure 4. The

field theory interpretation is that each vertex corresponds to an SU(N) gauge group and

therefore implies anomaly cancellation conditions for the fields ending or emerging from it,

or equivalently the beta function of the corresponding coupling should be zero.

Also, in the blocks of figure 5, each square or triangular face corresponds to a term in

the superpotential and therefore also implies a relation between the R-charges of the field

4In general the number of baryonic symmetries is equal to n − 3, where n is the number of external

(p, q)-branes. In our picture, for more generic toric diagrams, one constructs immediately n global Abelian

symmetries. The sum is always decoupled, two of them are the standard toric Abelian isometries, and the

remaining (n − 3) are the baryonic symmetries.
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(s−p,a−b)

(p,1−a)

(0,−1)

(−s,b)

s−p as−bp

p

s

  as−bp−s

as−bp+p−s     

Figure 2: Generic toric diagram with four edges. The intersection numbers are computed.

 r

s−p

p

s  

q

q−s

Figure 3: From figure 2 we extract the multiplicities of the bi-fundamental fields. We define

q = as − bp and r = p + q − s.

Figure 4: Vertices (or nodes) appearing in the toric representation of the quiver.

surrounding it. Namely, they have to add up to two if the corresponding superpotential

coupling has zero beta function.

The constraints reduce to the following independent equations

R→ + R← + R↑ + R↓ = 2 (3.2)

R→ + R↓ + R↖ = 2 (3.3)

R↑ + R↙ + R→ = 2 . (3.4)
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Figure 5: Building blocks of the toric representation of the quiver.

A simple way to satisfy all this constraints is to assign the following R-charges R↑ = R↓ = 0,

R← = R→ = R↖ = R↙ = 1.

However we can add an arbitrary solution of the homogeneous equations which can be

parameterized in terms of three real numbers (x, y, z):

R→ = 1 + x

R← = 1 − x + z

R↑ = y − z (3.5)

R↓ = −y

R↖ = 1 − x + y

R↙ = 1 − x − y + z .

It is easily seen that x and y correspond to QH and QV , the U(1)×U(1) global symmetries

of the theory.

On the other hand z can be associated with a U(1) symmetry Q3 in terms of which the

baryonic charge is written as QB = pQH + sQV + (p + q)Q3. The charge assignments are

summarized in table 2. There are only three independent charges. One can use Q3 which

is simpler or the baryonic charge which conveys more physical information since under it

all meson operators are neutral.

The global symmetry currents satisfy tr(R0) = tr(JB) = tr(JH) = tr(JV ) = 0. This is

due to the quiver structure of the theory:

tr(J) =
∑

f∈fields

J [f ] =
1

2

∑

i,j∈nodes

J [fi,j] = 0 . (3.6)

The last term vanish because, for each i,
∑

j J [fi,j] = 0, due to the fact that the symmetries

are free of anomalies.5

One can also check that tr(J3
B) = 0, as has to be the case for a baryonic symmetry.

In our parameterization, the two U(1) symmetries, QH and QV , also happen to satisfy

tr(J3
F ) = 0. This fact changes by mixing the two flavor currents between each other or

5In the case of toric quivers, for the non-R currents, one can see this by noticing the tr(J) can be recast

as (one half) the sum over all the faces of the total charges of the face, which has to vanish since the

superpotential respects the symmetry. For the R-symmetry, a similar condition tells that the quiver lives

on a two-torus [30].
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Figure 6: Periodic quiver for the L1,5|4 model. The four “extremal” BPS meson and the fun-

damental domain are highlighted. One square is shaded to make the knight periodicity easier to

appreciate. The dotted line shows an alternative LU (left-up) operator with the same charges. The

operator in the chiral ring is a linear superposition of the various possibilities.

with the baryonic current. The identification of JB with the baryonic symmetry comes from

the fact, as we will see, that all mesonic operators (traces of products of bifundamentals)

are uncharged under this symmetry.

3.1 BPS mesons

In this subsection we want to determine the BPS mesonic operators of the theories, that

will be compared with the massless BPS geodesics. The BPS operators that we need to

compare with the geodesic are such that they have maximal U(1) charges (in modulus)

for given R-charge. These are the geodesics that lie precisely on the boundary of the

coordinate rectangle. There are four boundaries, corresponding to the 4 supersymmetric

3-cycles, and four vertices. The operators that correspond to these four “corner” geodesics

thus encodes all the information about BPS geodesics. As a consequence we focus on these

four extremal mesons. It is clear also that these four mesons precisely correspond to the

four (p, q)-branes. The study of the mesons goes further with respect to the folded quiver

picture of the last subsection, and needs a precise understanding of the way in which

the blocks are glued together. If there is an overall common factor for the four GLSM

charges p, q,−r,−s, moreover, there can be various quivers corresponding to the same

folded quiver. The simplest examples are the two different Z2 quotients of the conifold.
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Figure 7: The fundamental domain of L1,5|4 and the traditional quiver. The numbers identify the

six gauge groups and also determine how the fundamental domain is tiled to cover the plane as in

figure 6. Notice that whereas the quiver only contains the information about the matter content of

the theory, the periodic quiver, also tell the superpotential [28, 30].

Meson R0 R QH QV QB

OLD s −qy + s(1 − x + z) −s −q 0

ORU r r(1 + x) + p(y − z) +r +p 0

OLU r r(1 − x + z) + q(y − z) −r +q 0

ORD s s(1 + x) − py +s −p 0

Table 3: Charge assignments for the four extremal BPS mesons. The variables (x, y, z) are taken

at the local maximum of the central charge a.

Assuming no overall common divisor there is only one quiver; determining this gives also

the global charges of our four extremal BPS operators.

The extremal operator going in the right-up direction, ORU , for instance, is composed

of → and ↑ fields. The extremal operator going in the left-up direction, OLU is composed

only of ←, ↑ and ↖ fields. Similarly for the other two operators. These requirements

uniquely determine the four operators.

Without entering into the details, the end result is pretty simple. We assume for the

moment that gcd(p, s) = gcd(p, r) = gcd(q, s) = gcd(q, r) = 1 and summarize the general

results in table 3. As an explicit example, in figure 6 we depict the four extremal operators

for the particular case of L1,5|4.

We can now proceed to understand what happens when there is a non trivial common

divisor between p or q and r or s. In these cases it is easy to see that the toric diagrams,

determined by the construction of the previous subsection in term of the GLSM fields, have

additional points on the edges. This corresponds to additional (p, q)-legs and reflects as non

trivial multiplicities for our four BPS mesons. Namely there are gcd(s, q) OLD operators,

gcd(r, p) ORD operators, and so on. Correspondingly, these chiral ring generators become

shorter, and their U(1) charges are divided by gcd(s, q) for OLD, by gcd(r, p) for ORD etc.

This does not affect the ratio between charges. So, for the purpose of comparing with the

geodesics, this fact does play a relevant role.

– 13 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
3

(0,q)

(1,p)

(0,0) (1,0)

Figure 8: Toric diagrams inside the strip.

4. Resolving the strip: Lp,q|q

In this section we focus on a subset of the Lp,q|r models that lies at the opposite boundary

with respect to the Y p,q models, namely Lp,q|q. In these case one gets the so called gen-

eralized conifolds, studied in detail in [36, 34]. The corresponding toric diagrams have no

internal points and lie inside the so called strip.

We restrict as usual to p ≤ q. For p = q we have Zq orbifolds of the conifold, and

for p = 0 the N = 2 Abelian Zq orbifolds of S5. The Y p,q models can be thought of as

an interpolation between S5 and T 11 that preserves an U(2) flavor symmetry [20]. In the

same way the Lp,q|q models can be thought of as an interpolation between S5 and T 11 that

preserves an U(1)2 flavor symmetry and complete non-chirality. In these cases, instead of

having six types of fields as for a general Lp,q|r, there are only five types, with multiplicities

p, q, q−p. The charges are given in the table 4. As it can be seen from the toric diagrams,

there are parallel external (p, q)-legs. This implies (see [43, 21, 44] for recent discussions)

that there are toric complex structure deformations of these models, as is the case of the

conifold [42], which is also L1,1|1. This corresponds to the possibility of pulling out one or

more branes from the (p, q)-web.

In addition to the two toric flavor symmetries, there are p+q−1 baryonic symmetries.

These symmetries, together with the combination JH + JV of flavor symmetries, are not

to be taken into consideration in performing a-maximization. The reason is that the

quivers we are considering are completely non chiral. This means that the bifundamentals

are either adjoint fields or come in pairs. Every pair contains two bifundamentals with

opposite gauge quantum numbers. Since also the interactions are non chiral, it is clear

that the two bifundamentals of every pair have they same r-charge. We can thus impose

this equality before doing the maximization. In our case we see that L-fields are in the

same pair of the U -fields. The other pair is D- and R-fields. One is thus left to maximize a

one parameter family of symmetries, that can be taken to be R0 +λ(JH −JV ). The results
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Field number QR QH QV

L p
2q−p−

√
p2−pq+q2

3(q−p) −1 0

R q
q−2p+

√
p2−pq+q2

3(q−p) +1 0

U p
2q−p−

√
p2−pq+q2

3(q−p) 0 +1

D q
q−2p+

√
p2−pq+q2

3(q−p) 0 −1

A q − p
4q−2p−2

√
p2−pq+q2

3(q−p) −1 +1

OLD 1
q+p+

√
p2−pq+q2

3 −p −q

ORU 1
q+p+

√
p2−pq+q2

3 +q +p

OLU q
4q−2p−2

√
p2−pq+q2

3(q−p) −1 +1

ORD p
2q−4p+2

√
p2−pq+q2

3(q−p) +1 −1

Table 4: Charges of the fields for the Lp,q|q quivers.

have thus to be quadratic irrational R-charges, even if in this case there is no non-Abelian

symmetry.

The final results for the R-charges is given in table 4. The central charges is, from the

formulas of [27]

c = a =
9

32
tr(R3) =

2p3 − 3p2q − 3pq2 + 2q3 + 2
√

(p2 − pq + q2)3

16(q − p)2
. (4.1)

The AdS/CFT formula [1, 41] a = π3

4V
relates this central charge to the volume of the

Lp,q|q manifold. The result for the volumes is given in [15] in terms of the solutions of a

quartic equation. It is easy to see that such equation becomes quadratic in the case p = s,

q = r and the positive solution matches precisely the field theory result.

It is important that the results obtained so far in this section can be applied to different

quivers, if q and p are not coprime integers. This corresponds to the possibility of taking

different Zk orbifolds of the same toric Sasaki-Einstein manifold. In this case the chiral

ring generators can be different from the ones we discuss. We thus restrict to q and p

coprime. In this case there is only one quiver, modulo Seiberg dualities. The chiral ring is

generated by four different types of operators. One subtlety is that some of these operators

come with non trivial multiplicities, this is due to the non smoothness of the background.

From the (p, q)-web of 5 branes (corresponding directly to the toric diagrams) this fact can

be seen as the presence of parallel external legs. It is the analog of the presence of two L−

operators with spin 0 in Y p,p [22].

There are two long operators, one, OLD, made of p L-fields and q D–fields and one,

ORU , made of p U -fields and q R-fields. There are q − p length 1 operators made with the

q − p different adjoint A-fields, that come together with the p mesons of the form tr(UL).

Finally, we find p length 2 of the form tr(DR).
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Figure 9: A toric phase for the generalized conifold. We show in the dotted lines how to glue the

fundamental domain.

Meson QH QV Qφ/QR Qψ/QR

OLD −p −q −1
p+2q−2

√
p2−pq+q2

p

ORU +q +p
2p+q−2

√
p2−pq+q2

q
−1

OLU −1 +1
−p+q+

√
p2−pq+q2

q
−1

ORD +1 −1 −1
p−q+

√
p2−pq+q2

p

Table 5: Charge assignments for the four extremal mesonic fields.

Now we redefine the two flavor charges QH and QV in such a way that for each meson

one of the two new charges, that we call Qφ and Qψ, satisfy Qφ = −QR or Qψ = −QR. We

display the charges in table 5. This gauge theoretical table is meant to be compared with

the geometrical table 1 of section 2. By construction the (−1)s in the last two columns

match. We now compute the other four values from the geometry.

4.1 Comparison with the geometry

In the case of r = q the geometrical formulas of the Appendix simplify. eqs. (7.9) and (7.8)

become

0 = p − 4qχ1 − 4(p − q)χ2
1 (4.2)

χ1 + χ2 =
1

2
(4.3)

which give

χ1 =
−p +

√

p2 − pq + q2

2(q − p)
(4.4)

χ2 =
q −

√

p2 − pq + q2

2(q − p)
. (4.5)
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Due to eq. (4.3), the square root in eq. (7.10) simplifies to

√

1 − 2(χ1 + χ2) + (χ2 − χ1)2 = χ2 − χ1 ≥ 0 . (4.6)

We thus find

2

3
− x1

α
=

p + 2q − 2
√

p2 − pq + q2

3p
(4.7)

2

3
− x2

α
=

p − q +
√

p2 − pq + q2

3p
(4.8)

2

3
− x1

β
=

q − p +
√

p2 − pq + q2

3q
(4.9)

2

3
− x2

β
=

q + 2p − 2
√

p2 − pq + q2

3q
. (4.10)

These are precisely the values found on the gauge side, reported in table 5.

5. General case: Lp,q|r

5.1 R-charges

In this section we perform a-maximization [26] to obtain the R-charges and compare to the

previous results. As a check we also compare the central charge we obtain to the volume

of the Sasaki-Einstein manifold.

Given the charge assignments of table 2 and eq. (3.5), the a-function that we should

maximize can be written as

tr((R − 1)3) =
32

9
a = p + q + qx3 + p(z − x)3 + s(y − z − 1)3

+r(−y − 1)3 + (q − s)(y − x)3 + (q − r)(z − x − y)3 (5.1)

where we included the contribution p+q from the gauginos. Now we have to find the point

at which ∂xa = ∂ya = ∂za = 0. It is useful to introduce two new variables ξ1 = x/z and

ξ2 = y/z. The first equations to solve implies

∂a

∂x
= 0 ⇐⇒ ξ1 =

1

2

s + 2(r − q)ξ2 + (q − p)ξ2
2

s + (r − s)ξ2
. (5.2)

Then we get

s
∂a

∂y
+ (s − r)

∂a

∂z
= 0 ⇐⇒ (5.3)

z =
2rs(1 − 2ξ2)

p(s − r)ξ2
2 + 2ξ1ξ2(q(r + s) − s2 − r2) + 2prξ2 + 2s(p − r)ξ1 − sp

. (5.4)

Finally, replacing the expressions for z and ξ1 in the equation ∂a
∂z

= 0 we get a quartic

equation for ξ2:

P[4](ξ2) = 0 (5.5)
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where P[4] is a polynomial of order four given by

P[4](ξ2) = 4(−4r2
−p2

+ + p2
+p2

− + 3r4
−) ξ4

2 (5.6)

+(32r2
−p2

+ + 4r−p+p2
− + 12r3

−p+ − 24r4
− − 8p2

+p2
− − 16r−p3

+) ξ3
2

+(r2
−p2

− + 19r4
− − 21r2

−p2
+ − 6r−p+p2

− − 18r3
−p+ − 4p4

+ + 5p2
+p2

− + 24r−p3
+) ξ2

2

+(10r3
−p+ − r2

−p2
− − p2

+p2
− − 7r4

− − 12r−p3
+ + 5r2

−p2
+ + 4p4

+ + 2r−p+p2
−) ξ2

+r4
− − p4

+ + 2r−p3
+ − 2r3

−p+

where, for brevity we defined p± = p±q and r− = r−s. When r = s or p = r corresponding

to r− = 0 or r− = p−, the equation factorizes. In the r− = 0 case, which corresponds to

Y
1
2
p+,− 1

2
p
− , a solution is ξ2 = 1

2 which can be seen to agree with the known result.

5.2 The volume of the manifold

A way to check the a-maximization we performed is to compute a and compare with the

volume of the Lp,q|r manifold. The value of a at the local maximum can be seen to be6

32

9
ā = r + s − r(1 + ȳ)2 − s(1 − ȳ + z̄)2 (5.7)

where the bars indicate quantities evaluated at the local maximum. We can now obtain

an expression in terms of ξ2:

ā = −18 p q rs
ξ2(ξ2 − 1)(2ξ2 − 1)[p+ + r−(2ξ2 − 1)]2[r− + p+(2ξ2 − 1)]

P (ξ2)2
(5.8)

P (ξ2) = 4p+(r2
− − p2

−) ξ3
2 + 2

[

2r3
− − r−(p2

+ + p2
−) − 3p+(r2

− − p2
−)

]

ξ2
2 (5.9)

+2(p+ − r−)(2r2
− − p2

− − p2
+) ξ2 + (p+ + r−)(p+ − r−)2 . (5.10)

We can rewrite ā in terms of a variable W as

ā =
1

4

8pqrs

(p + q)3
1

W
(5.11)

Since ξ2 obeys the quartic equation (5.5) that implies that W also satisfies a similar equa-

tion. Using a computer algebra program (e.g. Maple or Mathematica), it is easy to check

that the equation W satisfies is7:

0 = (1 − f2)(1 − g2)h4
− + 2h2

−

[

2 (2 − h+)2 − 3h2
−

]

W (5.12)
[

8h+ (2 − h+)2 − h2
−(30 + 9h+)

]

W 2 (5.13)

+6(2 − 9h+)W 3 − 27W 4 (5.14)

6This result is obtained by computing ã = a−
1
3
(x∂xa+ y∂ya+ z∂za) which at the extremes agrees with

a.
7To check this, one replaces (5.10) in this equation. After taking common denominator the numerator

can be seen to factorize into P[4](ξ2) and a polynomial of order twenty. Since, by (5.5), P[4](ξ2)=0, the

equation is satisfied.
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where f = −p−/p+, g = r−/p+ and h± = f2 ± g2. This equation is precisely the same

equation that appeared in [15] and determines the volume V = π3(p+ q)3W/(8pqrs) of the

Lp,q|r manifold. This implies that the AdS/CFT relation [1, 41]

a =
π3

4V
(5.15)

between a and the volume V of the manifold is exactly satisfied. It is perhaps interesting

that even if only one solution of the quartic equation for the volume is physical all solutions

actually match. This suggest that it might be possible to do a more direct derivation of

the equivalence between the supergravity and field theory computations.

5.3 BPS operators and massless geodesics

Now we would like to compare the flavor and R-charges of the operators that we associate

with the geodesics at the “corners” of the geometry and that we summarized in table 1.

The charges of the corresponding operators are summarized in table 3. One thing to note

is that since R↙ = R↓ + R← and R↖ = R↑ + R ← then the R-charges of these particular

operators depend only on their total QH and QV charges. For other operators that is not

the case, for example there are operators with large R-charge and QH = QV = 0, that arise

taking powers of one basic operator Oβ with QR = 2 and QH = QV = 0. This short BPS

meson Oβ generates the β-deformation [24, 25] and exists for any toric superconformal

quiver [24].

Our first task is to relate the U(1) flavor charges QV and QH with the isometries Qφ

and Qψ of the background. We found that we obtain a correct matching if we define

QV =
1

2
(Qψ − Qφ) (5.16)

QH = −(AQφ + BQψ)

2 p q (x2 − x1)
(5.17)

A = ps(α − x1) + qs(α − x2) (5.18)

B = pr(β − x1) + qr(β − x2) . (5.19)

The R-charges of the operators can be computed from eqn. (3.5) (see table 3), with the

result

RLD = −qȳ + s(1 − x̄ + z̄) (5.20)

RRU = r(1 + x̄) + p(ȳ − z̄) (5.21)

RLU = r(1 − x̄ + z̄) + q(ȳ − z̄) (5.22)

RRD = s(1 + x̄) − pȳ . (5.23)

We remind the reader that (x̄, ȳ, z̄) indicates (x, y, z) evaluated at the local maximum of

the central charge a. For the ratios QV /QR and QH/QR to match between field theory

and supergravity background we need that

−3

2

(

1 − x1

α

)

=
−q

−qȳ + s(1 − x̄ + z̄)
(5.24)
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3

2

(

1 − x2

β

)

=
p

r(1 + x̄) + p(ȳ − z̄)
(5.25)

3

2

(

1 − x1

β

)

=
q

r(1 − x̄ + z̄) + q(ȳ − z̄)
(5.26)

−3

2

(

1 − x2

α

)

=
−p

−pȳ + s(1 + x̄)
. (5.27)

In the appendix we show that these relations are exactly valid. In fact, together with a

further relation

x3

α
= − 2

3ȳ
(5.28)

x3

β
=

2

3(ȳ − z̄)
(5.29)

can be used to compute all parameters of the geometry in terms of field theory quantities.

We emphasize that these simple relations were found thanks to the method of comparing

massless geodesics with BPS operators.

6. Conclusions

In the present paper we consider massless geodesics moving in the recently found Lp,q|r

backgrounds. The study of the geodesics give considerable information about the field

theory, in particular they determine a set of four operators which have maximal charges

(in modulus) for given R-charge. These are operators which are constituted by elementary

fields all with the same sign of each charge. We find four of them, in correspondence

with the signs of the two flavor charges. On the other hand an analysis of the toric

diagrams of the theories and comparison with the previously known Yp,q case suggest a

generic construction of the toric representation of the quiver. This allows us to conjecture

the generic superconformal theories dual to the Lp,q|r manifolds. For those theories we

compute the R-charges using a-maximization and find that the result precisely matches

the computation done in the geometry. In particular a precise mapping is found between

the parameters of the geometry and those that arise in the field theory when performing

a-maximization. The analysis is straight-forward albeit cumbersome. For that reason we

choose an example of interest, the so called “generalized conifolds” which can be identified

with Lp,q|q. In that case we compute explicitly all the R-charges. In the generic case the

results are written in terms of the solutions of a quartic equation on both sides of the

correspondence. The agreement is shown by verifying that the solutions on one side satisfy

the equations on the other side of the correspondence.

In further work, it would be interesting to do a study of extended semiclassical strings

[45] in these backgrounds, as was done in [22] for the Yp,q case.

It would also be interesting to see if there is a way of finding the properties of geodesics

starting directly from the toric diagrams. A similar understanding has been achieved for

the volumes in [46].
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7. Useful formulas

7.1 The geometry

The manifold Lp,q|r is defined in terms of two different sets of parameters. One is (α, β)

and the roots x1 < x2 < x3 of the cubic equation x(α − x)(β − x) = µ. The other are the

integers p,q,r. Here we are interested in an explicit relation between the two sets that we

derive following [15].

The roots x1,2,3 satisfy (we assume from now on µ = 1)

x1x2x3 = 1, x1x2 + x1x3 + x2x3 = αβ, x1 + x2 + x3 = α + β . (7.1)

From [15], the relation to the integers p,q,r is given through a set of parameters Ai, Bi ,

Ci, i = 1, 2 defined as

Ai =
αCi

xi − α
, Bi =

βCi

xi − β
, Ci =

(α − xi)(β − xi)

2(α + β)xi − αβ − 3x2
i

(7.2)

and which satisfy

pC1 + qC2 = 0, pA1 + qA2 + r = 0, pB1 + qB2 + s = 0 . (7.3)

Using eq. (7.1) we can write

C1 = − 1

x1(x1 − x2)(x1 − x3)
, C2 = − 1

x2(x2 − x1)(x2 − x3)
. (7.4)

We can derive now two equations relating the xi’s to the integers p,q,r:

px2(x2 − x3) = qx1(x1 − x3), x1x2 + x1x3 + x2x3 =
rs

pq
(x1 − x3)(x2 − x3) (7.5)

which together with x1x2x3 = 1 completely determine xi in terms of p,q,r. To solve these

equations we introduce the ratios

χ1 =
x1

x3
, χ2 =

x2

x3
. (7.6)

The equations now reduce to

pχ2(1 − χ2) = qχ1(1 − χ1), χ1χ2 + χ1 + χ2 =
rs

pq
(1 − χ1)(1 − χ2) . (7.7)

The second equation allows to obtain χ2 as:

χ2 =
−p q χ1 + rs (1 − χ1)

p q (1 + χ1) + rs (1 − χ1)
. (7.8)

Replacing in the first one, we find a quartic equation for χ1:

0 = (p q − rs)2χ4
1 + (p q − rs) (3rs + p q)χ3

1 (7.9)

+(p q + rs) (3rs − 2p2 − p q)χ2
1 + [p2(rs − p q) − (p q + rs)2]χ1 + p2rs
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The other parameters follow trivially as

x1 =

(

χ2
1

χ2

)

1
3

, x2 =

(

χ2
2

χ1

)

1
3

, x3 =
1

(χ1χ2)
1
3

(7.10)

α =
1 + χ1 + χ2 +

√

1 − 2χ1 + χ2
1 − 2χ2 + χ2

2 − 2χ1χ2

2(χ1χ2)
1
3

(7.11)

β =
1 + χ1 + χ2 −

√

1 − 2χ1 + χ2
1 − 2χ2 + χ2

2 − 2χ1χ2

2(χ1χ2)
1
3

. (7.12)

We finally write

xi

α
=

2χi

1 + χ1 + χ2 +
√

1 − 2χ1 + χ2
1 − 2χ2 + χ2

2 − 2χ1χ2

(7.13)

xi

β
=

2χi

1 + χ1 + χ2 −
√

1 − 2χ1 + χ2
1 − 2χ2 + χ2

2 − 2χ1χ2

(7.14)

from which it possible to find the value of the U(1)-fibration functions at the four vertices

of the coordinate rectangle. Note that, although we set µ = 1, the results for any ratio of

two of the quantities xi, α, β is independent of µ.

7.2 Map to the field theory

Now we want to find the relation between the parameters xi=1...3, α, β in the geometry and

those in the field theory. The parameters we consider in the field theory are x, y, z used

in section 5, when performing a-maximization. Here we consider them always evaluated

at the local maximum in which case they are functions of p, q and r as determined in that

section. To emphasize that they are evaluated at the local maximum we denote them as

x̄, ȳ and z̄.

Analyzing the matching to massless geodesics we were led to certain relations that can

be summarized as follows:

ζ1 =
x1

α
= 1 +

2

3

q

qȳ − s(1 − x̄ + z̄)
(7.15)

ζ2 =
x2

α
= 1 − 2

3

p

−pȳ + s(1 + x̄)
(7.16)

ζ3 =
x3

α
= − 2

3

1

ȳ
(7.17)

ζ̃1 =
x1

β
= 1 − 2

3

q

q(ȳ − z̄) + r(1 − x̄ + z̄)
(7.18)

ζ̃2 =
x2

β
= 1 − 2

3

p

p(ȳ − z̄) + r(1 + x̄)
(7.19)

ζ̃3 =
x3

β
=

2

3

1

ȳ − z̄
. (7.20)

It is easier, as we did, to write these relations in terms of ratios. In the geometry this

amounts to eliminating the parameter µ. To prove these relations, we proceed to show
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that they satisfy the same equations that we derived in the previous subsection (after

appropriately dividing by α and eliminating β/α:

p ζ2 (ζ2 − ζ3) = q ζ1 (ζ1 − ζ3) (7.21)

ζ1ζ2 + ζ1ζ3 + ζ2ζ3 =
rs

p q
(ζ1 − ζ3)(ζ2 − ζ3) (7.22)

ζ1 + ζ2 + ζ3 = 1 + ζ1ζ2 + ζ1ζ3 + ζ2ζ3 . (7.23)

To check these equations first one replaces x, y and z by their expressions in terms of ξ2,

namely following eqs. (5.2), (5.4). After that, the equation becomes a rational function

whose numerator is a polynomial multiple of P[4](ξ2) as defined in (5.6). Since, at the local

extrema, ξ2 is a root of P[4](ξ2), the equations are satisfied.

These equation completely determine ζi=1...3 up to a discrete set of permutations. We

checked using particular examples that the assignments are as we discussed in the case

r > s that we are considering.

The same applies to the ζ̃i=1...3. Moreover, as an exercise, one can check that other

relations such as ζ1ζ̃2 − ζ̃1ζ2 = 0 also reduce to zero after using that P[4](ξ2) = 0.
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